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The design and construction of implicit LES models§
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SUMMARY

We o�er preliminary thoughts on the design of a modi�ed equation and the construction of a corre-
sponding numerical algorithm, which may be intended for use in an implicit large eddy simulation. The
principle of design here is based on ensuring a form for the energy dissipation that is not signi�cantly
dissipative on the resolved scales of the numerical mesh, but is strongly dissipative when the solution
is unresolved and so provides strong nonlinear stability in the simulation. The construction process
is modelled on the composition (hybridization) of two �ux approximations by means of a nonlinear,
�ow-dependent switch. Published in 2004 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently there has been an increased interest in implicit large eddy simulation (ILES) where
nonoscillatory �nite volume (NFV) methods provide e�ective modelling of the unresolved
dynamics of turbulence in high Reynolds number �uid �ows [1, 2]. ILES is a simple and
computationally e�cient approach, and has been successfully applied to complex engineer-
ing and geophysical �ows. Further, the absence of explicit parameters holds the promise of
increased predictiveness in simulations. ILES methods o�er a more automatic approach to
modelling complex, general systems of equations beyond those where classical turbulence
theory is grounded.
NFV methods are based on a variety of constructions, both algebraic and geometric. Many

of these have been exploited for ILES. The common features of all these schemes are nonlin-
earity and �nite volume approximation. The combination leads to �ow-dependent dissipation
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and nonlinear computational stability. Despite this commonality, individual algorithms di�er
in their details and consequent e�ectiveness. In Reference [3] we used modi�ed equation anal-
ysis [4] to �nd the equivalent partial di�erential equations (i.e. modi�ed equations) of several
common NFV algorithms, exhibiting the distinct form of the nonlinear dissipative terms in
each case. We remark that many (but not all) of these forms can be shown through analysis
to correspond to explicit subgrid scale closures used in large eddy simulation (LES).
Suppose for the sake of argument that one could devise an optimal method (with its cor-

responding modi�ed equation) to describe a turbulent �ow. Could one construct a numerical
algorithm that corresponds to that particular equation? Further, what principles and constraints
would one choose to de�ne optimality? Would these principles and constraints be generic, or
be �ow speci�c?
This paper is a �rst e�ort to address these questions. In Section 2, we discuss a particular

principle of design, namely that the algorithm must be appropriately dissipative on the resolved
length scales of the computation mesh. In Section 3, we describe a general construction
process based on a composition of high-order and low-order �uxes by a nonlinear, �ow-
dependent switch. We examine the result of this reverse engineering process in the context
of the one-dimensional Burgers’ equation for speci�c choices of the �uxes and of the switch.
The emphasis in this paper will be on the dissipative character of the e�ective model. We
provide some discussion in Section 4.

2. ENERGY DISSIPATION

The form and magnitude of energy dissipation is a principal concern in the design of
a numerical algorithm. Essentially all physical processes, including �uid �ow, are dissipative.
However in many cases of practical interest, the length scales at which energy is dissipated
are too small to be resolved in numerical simulation. For example, this is the situation in
such diverse problems as large Reynolds number turbulence, and high-speed compressible
�ows with shocks. This similarity can be exploited in the development of implicit turbulence
models.
The fact that the dynamics of the dissipative scales are too small to be resolved does not

imply that the process of energy dissipation can be ignored. Consider the case of a turbulent
�uid forced at the large scales of motion. Because of the nonlinearity of the convective
processes, energy cascades down in scale—e.g. to smaller and smaller eddies. Physically, this
cascade process continues until it reaches length scales where molecular viscosity becomes
e�ective at converting the kinetic energy into heat. However in numerical simulations where
the viscous length scales are not resolved, energy will simply build up at the smallest resolved
scales if dissipation is absent from the numerical algorithm, producing a qualitatively incorrect
solution.
This conundrum has been long recognized in the turbulence modelling community. The con-

ventional solution has been to augment the governing equations by explicit terms
(i.e. subgrid scale models) whose main function is to model turbulent e�ects and in par-
ticular to provide appropriate energy dissipation. On the other hand, advocates of the ILES
approach rely on the dissipative properties of the numerical algorithm itself to provide the
requisite energy dissipation. In ILES, the particular form of the energy dissipation usually
results from the imposition of monotonicity constraints. But suppose we wish to take a more
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active role by designing an algorithm with a particular form of dissipation. On what basis
would one attempt to choose that form?
The most satisfying basis would be the analytic form of the �nite volume-averaged equation.

An attempt to derive this form for the one-dimensional Burgers’ equations was made in
Reference [1]. However there remain unresolved issues in the averaging process. Speci�cally,
there is a lack of uniqueness in the process that cannot be resolved mathematically, and so
requires additional input from physical argument (i.e. thermodynamics).
A more practical alternative is to draw on the experience of the turbulence modelling com-

munity by prescribing a subgrid scale model as a regularizing term. Many subgrid scale models
have been devised and undergone extensive testing and validation against experimental and
�eld data. Their success and continued use in engineering and geophysical �ow simulations
imply their utility. At the same time, the existing diversity of such models casts doubt on the
existence of an optimal model.
To be speci�c, let us consider the following one-dimensional PDE for velocity u:

@u
@t
+
@f(u)
@x

= �
@2u
@x2

(1)

Here f(u) is a convex �ux function and � is the physical viscosity. We wish to solve this
PDE numerically on a grid with cell size �x. We suppose that the viscosity is small in the
sense that (U�x)=��1 where U is some measure of velocity, e.g. from the initial or boundary
conditions of the problem. Then, as described above, (1) is not suitable as a model equation
for the numerical simulation and it is necessary to add a term that is dissipative on the scale
�x in order to ensure numerical stability. We will choose this term from among the explicit
subgrid scale models.
For the sake of de�niteness, here we will focus attention on one subgrid scale model that

is both simple and widely used. The Smagorinsky model [5] was �rst developed for use in
atmospheric simulations. It is closely related to the arti�cial viscosity of von Neumann and
Richtmyer [6]. In one dimension the arti�cial stress has the form (C�x2|@u=@x|@u=@x) where
C is a dimensionless constant. Then the modi�ed equation that we seek is
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@f(u)
@x

=C�x2
@
@x
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)
(2)

The speci�cs of the numerical �ux f(u) will determine the bounds on the value of C. Here
we have omitted the physical viscosity as being inconsequential to the numerical simulation.
Multiplying (2) through by the velocity, we derive the associated equation for kinetic energy
K = 1

2 u
2
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+
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=−C�x2
∣∣∣∣@u@x
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3

+ C�x2
@
@x

(
u
∣∣∣∣@u@x

∣∣∣∣ @u@x
)

(3)

where @F=@u≡ u@f=@u. Integrating this equation over the entire mesh clearly shows the
dissipative nature of the modi�ed equation.
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3. REVERSE ENGINEERING

In this section we describe a process to construct an algorithm for simulating (1) whose
modi�ed equation matches a speci�ed form, e.g. Equation (2). We term this process reverse
engineering (RE). RE does not necessarily have a unique result. Although we have not re-
quired that the RE algorithm be nonoscillatory, it appears reasonable to attempt to model the
RE process on similar ideas used to build NFV methods. One such idea is the melding of
low-order and high-order �uxes (e.g. FCT [7], MPDATA [8], TVD [9]). This melding or
hybridization is accomplished by means of a nonlinear, �ow-dependent switch �.
We write the algorithm in the conservation (�nite volume) form

un+1j = unj − �t
�x
(fnj+1=2 − fnj−1=2) (4)

where in common notation the superscript n indicates the time level, the subscript j is a
spatial index identifying the centre of the cell, and �t is the computational time step. Further,
we write the �uxes generically as

fj+1=2 = �j+1=2fLO + (1− �j+1=2)fHO (5)

The high-order �ux, fHO, is chosen to given accurate solutions in smooth regions of the �ow.
A common choice is the Lax–Wendro� �ux

fLWj+1=2 =
1
2
(fnj + f

n
j+1)− 1

2
�
@f
@u
(unj+1 − unj ); �≡ @f

@u
�t
�x

(6)

where � is the dimensionless Courant number. The low-order �ux fLO is chosen to ensure
su�cient energy dissipation in regions of rapidly varying �ow. The most common choice is
simple upwinding

fupj+1=2 =
1
2
(fnj + f

n
j+1)− 1

2

∣∣∣∣@f@u
∣∣∣∣ (unj+1 − unj ) (7)

As regards the switch, we will require �∈ [0; 1]. This ensures that the composite scheme (4)
is stable for at least the more restrictive of the time step conditions associated with the
individual �ux models FHO and FLO. Furthermore, this limitation of � also ensures �ux
consistency

f(uj; uj+1)=f(u) if uj= uj+1 = u

assuming that the individual �uxes have this property. We also want � → 0 as the �ow
becomes smooth, to ensure an accurate solution in these regions. A simple way to characterize
smoothness on the mesh scale is through the dimensionless ratio (�x=u@u=@x). For example,
one might de�ne

�j+1=2 ≡ min
(
1; C

∣∣∣∣ uj+1 − uj
uj+1 + uj + �

∣∣∣∣
)

(8)

where the small (properly dimensional) constant �≡ �x=�t× 10−15 avoids division by zero.
Another e�ective form for the switch is (�x(@x=@u)@2u=@x2) which closely corresponds to the
minmod limiter [3].
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Let us apply these choices: (6) for the high-order �ux, (7) for the low-order �ux, and (8)
for the switch, to the case of Burgers’ equation where the �ux function f(u)= u2. In the
limit �t → 0, we �nd the modi�ed equation:

@u
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+
@( 12 u
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+
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∣∣∣∣@u@x
∣∣∣∣ @u@x

)
(9)

The terms not present in our original modi�ed equation are related to linear dispersion (which
can be removed with a third-order base scheme) and a nonlinear term associated with control
volume di�erencing. The corresponding equation for kinetic energy is
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(10)

which is dissipative for C¿ 2
3 .

Comparing (10) with (3), we see that they have qualitatively the same form of energy
dissipation. Our RE equation does not treat rarefying and compressing regions symmetrically,
a modi�cation that is now preferred for the arti�cial viscosity in shocks as well.¶ Also, the RE
equation has extra dispersive terms that move energy around, but do not change the dissipative
properties of the equation. The e�ect of this dispersion has been discussed in Reference [11].
We note that the modi�ed equation (9) is very similar to that for MPDATA [1], even though

the motivation for its derivation is much di�erent. MPDATA in its basic form [12], as well as
our RE method, is sign-preserving but not monotonicity preserving. In our case, this is a direct
result of the form for the switch �, which is not gauge invariant (i.e. depends explicitly on
where the zero of velocity is set). Other forms for the switch that are monotonicity preserving
are proposed in Reference [13] through the use of modi�ed equation analysis.
MPDATA is derived as a multipass method, where truncation errors are compensated

with upwind approximations. In this approach, it is possible to eliminate unwanted dispersive
errors, as appear in (9). The elimination of unwanted second-order dispersion in MPDATA
is discussed in Reference [14].
Our limiter (8) was designed to emphasize the use of the accurate �ux fHO for smooth �ow.

An alternate idea is to completely turn o� any contribution of fLO wherever possible, while
strongly dissipating �ows that are not su�ciently resolved. This implies a more nonlinear
switch. One common switch that has this characteristic is based on the monotone limiting
such as that used in MUSCL or FCT methods, e.g. a minmod limiter. To illustrate, �rst
de�ne the monotone bound

�fj+1=2 = 2minmod(fj+1 − fj; fj − fj−1) (11)

This is a �rst-order accurate approximation to the �ux. Now we de�ne a �nal �ux similarly,

fj+1=2 =fj +minmod(�fj+1=2; fHOj+1=2 − fj) (12)

where the fHOj+1=2 can be any second-order or higher �ux.

¶For arti�cial viscosity this is the result of work by Marshall Rosenbluth while at Los Alamos in 1955 [10].

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1173–1179



1178 L. G. MARGOLIN AND W. J. RIDER

4. DISCUSSION

In this paper we have explored the design of model equations for ILES, and the construction
of a corresponding algorithm. The underlying principle for the design of a model equation
is that of ensuring energy dissipation on the smallest resolved scales of the computational
mesh. We note that a similar strategy is employed in the variational multiscale methods [15]
through the use of a spectral viscosity. In spectral space, the quanti�cation of scale size in
the numerical solution is explicit and so it is possible to design a wavenumber dependent
viscosity that damps the smallest resolved scales without a�ecting the larger scales of motion.
The situation is more complex in �nite di�erence algorithms, where all computational cells
have the same length scale, and there is no readily accessible local quanti�cation of scale
size in the numerical solution. Instead, in conventional turbulence simulations explicit scale-
dependent dissipative terms are added to the equations, while in ILES simulations dissipation
results from the constraint of preserving monotonicity. In Reference [3] we demonstrated the
equivalence of these approaches.
In the current paper, we have exploited this equivalence to design new algorithms for

modelling turbulent �ow by using explicit subgrid scale models to regularize the evolution
equations. We note that these subgrid scale models are independent of the physical viscosity
� of the �uid. This is an indication that the details of the small scales of �uid motion where
physical viscosity is operating do not matter, or more precisely that the small scales are
enslaved by the larger scales of motion. It is this enslavement that underlies the success of
both LES techniques and of ILES.
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